Search results

Search for "electrochemical environment" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • conductivity in the acidic and corrosive electrochemical environment of the battery system. Moreover, they are comparatively inexpensive [5]. One disadvantage is their poor electrochemical activity, which makes an activation step necessary [6]. A common way to achieve higher activities is the thermal treatment
PDF
Album
Full Research Paper
Published 28 May 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • -defined manner. Therefore, open nanoporous network structures are particularly suitable for property-tuning experiments in an electrochemical environment, due to a large contact area with the electrolyte and macroscopic sample dimensions. In nanoporous metals, the electrochemical control of actuation [1
  • introduced above, accounting for the ascending part of the sawtooth, could be a possible explanation for the serrations in the strain curve. Summary In this work we investigated the deformation mechanisms in npPd by using an in situ dilatometric technique in an electrochemical environment. Different hydrogen
  • transition from PdHβ to PdHα during hydrogen desorption enables the mechanism of internal-stress plasticity in nanoporous palladium. This phase transition, and thus plasticity, can be controlled via the potential in an electrochemical environment. A threshold potential for nanoporous PdHβ formation (−0.96 V
PDF
Album
Full Research Paper
Published 10 Dec 2018

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • conclusions is that stable junctions may form from solvents as well and that both conductance–distance traces and current–voltage characteristics have to be studied to distinguish between contacts of solvent molecules and of molecules under study. Keywords: electrochemical environment; mechanically
PDF
Album
Full Research Paper
Published 22 Jul 2016

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • -bearing thiophenes) exhibit a rectification ratio two orders of magnitude larger than it has ever been observed before in single (or few)-molecule junctions [2]. This technological breakthrough is due to the experiment being performed in an electrochemical environment, namely a polar solvent (propylene
  • realize a single-atom switch by reversibly manipulating atomic-scale quantum point contacts in an electrochemical environment resulting in a single-atom transistor [4][5][6][7] that exhibits an outstanding stability at room temperature. This opens attractive perspectives to prepare quantum devices based
PDF
Album
Full Research Paper
Published 11 Apr 2016

Magnesium batteries: Current state of the art, issues and future perspectives

  • Rana Mohtadi and
  • Fuminori Mizuno

Beilstein J. Nanotechnol. 2014, 5, 1291–1311, doi:10.3762/bjnano.5.143

Graphical Abstract
  • highly reducing electrochemical environment remains a source of several challenges as explained in subsection 1.1 Aiming at overcoming these, magnesium ion insertion anodes have been recently proposed and demonstrated. These are explained in subsection 1.2. 1.1 The magnesium metal anode When discussing
PDF
Album
Review
Published 18 Aug 2014

Volcano plots in hydrogen electrocatalysis – uses and abuses

  • Paola Quaino,
  • Fernanda Juarez,
  • Elizabeth Santos and
  • Wolfgang Schmickler

Beilstein J. Nanotechnol. 2014, 5, 846–854, doi:10.3762/bjnano.5.96

Graphical Abstract
  • -covered metals has not been investigated systematically. There are several good reasons: (1) In an electrochemical environment, the oxide films on metal surfaces are not crystalline, but amorphous. In addition, they often incorporate OH and water. A good overview is given in [30]. (2) DFT studies on
PDF
Album
Full Research Paper
Published 13 Jun 2014

Structural and electronic properties of oligo- and polythiophenes modified by substituents

  • Simon P. Rittmeyer and
  • Axel Groß

Beilstein J. Nanotechnol. 2012, 3, 909–919, doi:10.3762/bjnano.3.101

Graphical Abstract
  • electronic structure The electrical conductivity of a large class of polymers, in particular of polythiophene, can be highly increased when they are doped. The doping process itself corresponds basically to a manipulation of the number of valence electrons of the polymers, often in an electrochemical
  • environment induced by adding counter ions. In order to model these doped compounds we varied the number of valence electrons per unit cell. Counter ions were not explicitly considered but modeled through a homogeneous charge background. Because polythiophene is known to be a good conductor in the p-doped
PDF
Album
Full Research Paper
Published 27 Dec 2012

Revealing thermal effects in the electronic transport through irradiated atomic metal point contacts

  • Bastian Kopp,
  • Zhiwei Yi,
  • Daniel Benner,
  • Fang-Qing Xie,
  • Christian Obermair,
  • Thomas Schimmel,
  • Johannes Boneberg,
  • Paul Leiderer and
  • Elke Scheer

Beilstein J. Nanotechnol. 2012, 3, 703–711, doi:10.3762/bjnano.3.80

Graphical Abstract
  • illumination (see Figure 1) in an electrochemical environment. Blue: laser pulse (duration 1 ms). (b) Red: Light-induced signal under illumination of a mechanically controlled break-junction. Blue: laser pulse (duration 0.5 ms) [16]. Spatial dependence of the light-induced signal (see Figure 2a) for the two
PDF
Album
Full Research Paper
Published 24 Oct 2012

Lifetime analysis of individual-atom contacts and crossover to geometric-shell structures in unstrained silver nanowires

  • Christian Obermair,
  • Holger Kuhn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2011, 2, 740–745, doi:10.3762/bjnano.2.81

Graphical Abstract
  • electrochemical environment leads to strongly enhanced surface-atom mobility, leading to a decrease of the transition towards the region of smaller contacts. The enhanced surface mobility results in a high degree of order of the contact area. Together with the fact that the deposition occurs without external
PDF
Album
Full Research Paper
Published 03 Nov 2011
Other Beilstein-Institut Open Science Activities